
Experimental and Theoretical Characterization of the High-Affinity
Cation-Binding Site of the Purple Membrane

Leonardo Pardo,* Francesc Sepulcre,# Josep Cladera,# Mireia Duñach,# Amı́lcar Labarta,§ Javier Tejada,§ and
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ABSTRACT Binding of Mn21 or Mg21 to the high-affinity site of the purple membrane from Halobacterium salinarium has
been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calcula-
tions, respectively. The binding of Mn21 cation, in a low-spin state, to the high-affinity site occurs through a major octahedral
local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding
site in the Schiff base vicinity is proposed. In this model, a Mg21 cation interacts with one oxygen atom of the side chain of
Asp85, with both oxygen atoms of Asp212 and with three water molecules. One of these water molecules is hydrogen bonded
to both the nitrogen of the protonated Schiff base and the Asp85 oxygen. It could serve as a shuttle for the Schiff base proton
to move to Asp85 in the L-M transition.

INTRODUCTION

The purple membrane (PM) fromHalobacterium salina-
rium is a specialized part of the cellular membrane that
translocates protons under light absorption (Oesterhelt and
Stoeckenius, 1973). It contains a unique transmembrane
protein, bacteriorhodopsin (BR), which is formed of an
apoprotein ofMr 26,000 and a retinal molecule bound to the
protein through a protonated Schiff base. Native purple
membrane (lmax568 nm, light adapted) contains five bound
cations (one Ca21 and four Mg21) per bacteriorhodopsin
molecule (Kimura et al., 1984; Chang et al., 1985). Acidi-
fication of a PM suspension gives rise to a blue form
absorbing at;600 nm, which is due to the protonation of
Asp85, the Schiff base counterion (Subramaniam et al.,
1990; Jonas and Ebrey, 1991; Metz et al., 1992). Upon
deionization, the apparent pK of the purple to blue transition
in water suspension increases by;2.5 pH units, as com-
pared to the native membrane. The deionized membrane can
be fully regenerated by adding a wide variety of cations
(Kimura et al., 1984; Chang et al., 1985; Ariki and Lanyi,
1986). The blue membrane has an altered photocycle, and it
is unable to translocate protons (Mowery et al., 1979; Chang
et al., 1985). On the other hand, a relationship between the
retinal pocket and some of the divalent cation-binding sites
has been shown (Dun˜ach et al., 1986; Sepulcre and Padro´s,
1992).

The binding of the Mn21 cations to the blue membrane at
pH 5 was determined, by spin-labeling methods, to consist

of a high-affinity site (affinity constant 26mM21), three
sites of 2mM21, and one site of 0.6mM21 (Duñach et al.,
1987). Similar values were found at pH 5 for Ca21 binding,
with a rapid-filtration technique (Dun˜ach et al., 1988b).
Other workers reported, by using potentiometric techniques,
the presence of only two medium-affinity sites (2.4mM21

and 0.4mM21, respectively) plus four low-affinity sites at
pH 4.3 (Zhang et al., 1992). In addition, extended x-ray
absorption fine structure (EXAFS) studies provided evi-
dence for a tetragonal coordination of Mn21 with six oxy-
gen atoms located in the protein molecule (Sepulcre et al.,
1996).

The magnetic susceptibility technique provides an inde-
pendent means of corroborating our previous EXAFS re-
sults (Sepulcre et al., 1996). In the present work, we col-
lected magnetic susceptibility data obtained by
superconducting quantum interference device (SQUID)
magnetometry from the blue membrane substituted with one
Mn21 cation occupying the high-affinity site. In the scope
of the crystal field theory, this study allows us to deduce
both the local symmetry and the electronic structure of
Mn21 bound to this site. A possible structure for the high-
affinity cation-binding site in bacteriorhodopsin is proposed;
its feasibility is tested by quantum mechanical calculations.

MATERIALS AND METHODS

Membrane preparation

The purple membrane was isolated from theHalobacterium salinarium
strain S9 as described in Oesterhelt and Stoeckenius (1974). Deionized
samples were prepared by passing membrane suspensions through a cation
exchange column (Dowex 50W). After addition of enough MnCl2 to fill the
high-affinity site (Duñach et al., 1987), the pH of the sample was adjusted
to pH 5 with small amounts of concentrated NaOH. Correct binding of
cations was controlled by observing the blue shift of the visible absorption
spectrum (Dun˜ach et al., 1987). Five milligrams of the partially regenerated
membrane was lyophilized for magnetic susceptibility measurements.
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SQUID magnetometry

Magnetic susceptibility measurements were carried out by using a SQUID
magnetometer working in a temperature range between 2 K and 310 K, and
with an applied magnetic field,H, of 5 kOe. Experimental error of
temperature measurements were less than 0.1 K, whereas the estimated
error for eachx(T) point was below 5%. The diamagnetic correction, due
to both the cylindrical plastic boat and the membrane, was achieved by
recording the thermal dependence of the susceptibility under different
values of the applied magnetic field ranging from 2 kOe to 15 kOe.

Near room temperature, the temperature dependence of the susceptibil-
ity can be expressed as

x~T! 5
C

T
1 xd

whereC is the Curie constant andxd is the diamagnetic susceptibility due
to the container and membrane diamagnetic atoms. Therefore,x(T) z T 5
C 1 xd z T, andx(T) z T has a linear dependence onT, wherexd is the
corresponding slope. We verified this linearity with different values ofH,
and by using the preceding equation, we evaluated the averagexd value.

Susceptibility calculations

The energetically lowest lying multielectron terms of the Mn21 cation have
been obtained, in the scope of a single-point crystal-field model, from the
diagonalization of the Hamiltonian,

Ho 5 Hee1 Hcf

on the basis of the 3d5 configuration. In this Hamiltonian,Heecorresponds
to the Coulomb repulsion between electrons, andHcf accounts for the
crystal field potential, which for the position of the Mn21 cations in the
purple membrane is assumed to have C2v symmetry (tetragonal with
rhombic distortion) and can be expanded in terms of theVem operators and
the electronic splittingsei and D, of the 3d1 energy levels (Eicher and
Trautwein, 1969; see Fig. 1). For realistic values of the crystal field
parameters, the low lying multielectron wave functions are4E, 2B2,

2E,
4A2, and6A1 (Thomanek, 1975). In this subset of eigenfunctions, the total
HamiltonianH

H 5 Ho 1 Hso 1 Hm

is rediagonalized, whereHso represents the spin-orbit coupling andHm

stands for the interaction with the externally applied magnetic field. The
resulting term scheme is used to calculate the thermal dependence of the
magnetic susceptibility (Alabart et al., 1990).

Geometries and energetics

All of the quantum mechanical calculations were performed by ab initio
methods in the GAUSSIAN-94 system of programs (Frisch et al., 1995).

The structure optimizations of (Mg21 z 2H2O), (Mg21 z 3H2O), and Mg21

complexes were performed with the 3–21G* basis set. Energy calculations
of the interaction between the cation and the protein model,Eint, were
performed with the 6–311 G* basis set at the level of Restricted
Hartree-Fock (RHF). Solvation energies,Esolv, of isolated (Mg21 z 2H2O)
and (Mg21 z 3H2O) were calculated with a polarized continuum model
(Miertus et al., 1981; Miertus and Tomasi, 1982), as implemented in
GAUSSIAN-94. The enthalpy of formation of the complex between the
cation and the protein model was calculated asDHf 5 Eint 2 Esolv.

The model of BR sites employed in the calculation ofEint comprised the
Ca and the side chains of Asp85, Asp212, and Lys216Schiff base. The retinal
chromophore bound to Lys216 via a protonated Schiff base was replaced
with aACH2 group. During the energy optimization of the system, the
position of the atoms Ca of Asp85 and Asp212, and Ca, Cb, Cg, Cd, Ce, Nz,
and C15 of Lys216 Schiff base were kept fixed at the positions originally
determined by electron microscopy (Henderson et al., 1990).

RESULTS

Magnetic susceptibility experiments

The results of the magnetic susceptibility measurements are
given in Fig. 2. These data have been fitted to the theoret-
ically calculated magnetic susceptibility, using as adjustable
parameters the values of the 3d1 splittings,ei (i 5 1, 2, 3)
andD, and the spin-orbit coupling constantl, which can be
expressed as a function of the free ion spin-orbit coupling
constantl0 5 300 cm21 and a fit parameter taking into
account the covalency degree of the binding of the Mn21

cations with its ligands (l 5 l0a2). Table 1 summarizes the
results of the fitting procedure, compared with the experi-
mental data. The resulting energy diagram of the low-lying
multielectron states of Mn21 cation is shown in Fig. 3.

The values obtained for the crystal-field parametersei

andD can be correlated with the local structure of the Mn21

site. Thee3 value gives the energy of the antibonding single
electron orbital dx2-y2 referred to the dxy orbital. The high
value found fore3 suits well the major tetragonal character
of the local symmetry around the Mn21 location site. This
suggests a strong interaction between the Mn21 ion and the
ligands lying in thexy plane.e2 is the energy of the anti-
bonding 3dz2 orbital referred to the 3dxy. This value is much
lower thane3 (see Table 1). This indicates that the interac-
tion between the Mn21 and the ligands lying in thez
direction is different between them or is different from the
other ligands of thexy plane. In addition, the low value
obtained for theD parameter indicates a minor rhombic
local distortion around the Mn21 site in thexy plane.

Comparison of our results with those previously pub-
lished for heme systems and Mn21-phthalocyanine com-
plexes (Thomanek et al., 1977; Labarta et al., 1984, 1985)
show that the2E low-spin state appears as the ground term
only in the present case. This is a consequence of a higher
value of the crystal field intensity as it is characterized by
the e3 parameter. Therefore, it is reasonable to assume that
the interactions between the Mn21 cation and the ligands,
indicated byei/r i ratios (whereei is the effective neighbor
charge andr i is the distance between this neighbor charge
and the cation) are higher in our case than in the heme
systems or in the Mn21-phthalocyanine complex.

FIGURE 1 Splitting of 3dl levels in C4v and C2v symmetry environ-
ments.
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It should be highlighted that these results are in good
agreement with EXAFS data, which demonstrated that
Mn21 in the high-affinity binding site presents a distorted
tetrahedric symmetry with a coordination number of 6. A
location of this site within the protein and not in the lipid
phase was also suggested (Sepulcre et al., 1996). The inde-
pendence of the two techniques used reinforces the conclu-
sions obtained. Thus, having corroborated the metal coor-
dination and geometry, we proceeded toward finding a
suitable molecular environment for the cation.

In the following, we take as equivalent a binding site
occupied indistinctly by Ca21, Mn21, or Mg21.

Several previous results can aid in defining a probable
location for the cation-binding site. Although indirect ef-
fects could also account for the observed events, it is gen-
erally thought that a cation site near the retinal Schiff base
is necessary to explain 1) the well-known effect of cation

FIGURE 2 Plot ofP21 values as a function of tem-
perature. The continuous line corresponds to the least-
squares fit ofP21 to the experimental values, using as
adjustable parameters the values of the 3d1 splittings and
D, and the spin-orbit coupling constant 8.

TABLE 1 Least-squares parameters obtained from the xm
21

fitting procedure, and calculated values of the energy of
several multielectron terms corresponding to the 3d5

configuration

e1 500 cm21 (arbitrarily fixed)
e2 165276 200 cm21

e3 357056 500 cm21

D 230 6 20 cm21

a2 0.706 0.05
Curie constant 1.02 emuz K z mol21 (experimental value, 1.07)*
Curie temperature 8.5 K (experimental value, 8.7)*
Magnetic moment 2.86 Bohr’s magneton (experimental value, 2.93)*
2E 0 cm21

4A2 505 6 50 cm21

2B2 10966 100 cm21

4E $5800 cm21

6A1 $7000 cm21

Giromagnetic
constants:

gx 5 0.977

gy 5 0.209
gz 5 21.551

*Experimental values correspond to the fit of thexm
21 (T) points to the

Curie-Weiss law.
FIGURE 3 Electronic structure levels of Mn21 occupying the high-
affinity site of purple membrane.
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binding on the visible absorption maximum; 2) the change
in number and affinities of the cation-binding sites by
retinal removal (Chang et al., 1986; Dun˜ach et al., 1986;
Zhang et al., 1992); and 3) the change in cation binding by
Schiff base reduction or by isomerization to 9-cis, i.e., the
pink membrane (Dun˜ach et al., 1988a). If the retinal ab-
sorption maximum is modulated primarily by the protona-
tion state of Asp85 and its distance to the Schiff base, a
natural site for the cation would be near Asp85. In addition,
experiments with mutated BR demonstrated a strong influ-
ence of Asp85 and Asp212, especially the latter, on the
binding affinity of Ca21 (Zhang et al., 1993). On the other
hand, EXAFS results indicated a maximum of three carbon
atoms forming the second shell of the Mn21 cation and
excluded a participation of P or S atoms (Sepulcre et al.,
1996).

Taking into account the above considerations, and the
arrangement of the lateral chains near the Schiff base that
arise from the structural model of Henderson et al. (1990),
we have undertaken a theoretical analysis of the possible
environment of a Mg21 cation near the Schiff base.

A model of the binding site in the Schiff
base environment

As a working hypothesis, we can assume that Mg21 binds to
BR through an octahedral coordination shell formed by the
two carboxylic side chains of Asp85 and Asp212, located in
the base of the pyramid, and two discrete water molecules
located in the axis. To evaluate computationally the feasi-
bility of this hypothesis, a molecular model consisting of
(Mg21 z 2H2O) and the side chains of Asp85, Asp212, and
the Schiff base was energy optimized. During the optimi-
zation (see Fig. 4A and Materials and Methods), the Ca of
the amino acids and the heavy atoms of the side chain of
Lys216 forming the Schiff base were kept fixed at the
positions originally determined by electron microscopy
(Henderson et al., 1990). For a buried cation in the interior
regions of BR, it is clear that the cation must be desolvated.
We considered first the contribution of solvation energies to
the stabilization of the proposed complex. Results in Table
2 show the obtained values ofEint, Esolv and DHf. As
expected, Esolv is very high: 2330.0 kcal/mol for
(Mg21 z 2H2O). This energy is compensated for by the
strong interaction with the highly polar sites on the protein
model: 2403.1 kcal/mol, resulting in a value ofDHf of
273.1 kcal/mol. The negative sign inDHf indicates that the
formation of the complex is favorable. It is important to
clarify that the calculation ofDHf does not include the
change in solvation energy of BR or its conformational
change. However, given the large value ofDHf obtained in
the formation of the complex, inclusion of these terms into
DHf is expected not to modify the obtained preference of the
complex over the isolated ligands.

We can conclude that the binding of the divalent cation to
the retinal pocket of BR, through the side chains of Asp85

and Asp212, is energetically feasible despite the presence of
the positive charge of the Schiff base. Fig. 4B presents a
detailed view of the computed cation-binding site. Selected
geometrical parameters of the optimized structure are
shown in Table 3. The proposed interaction between the
cation and the Asp residues is directly satisfied by the
geometry constructed here. As can be seen in Fig. 4B and
Table 3, the Mg21 cation has an octahedral coordination
shell formed in the base of the pyramid by the Od atoms of
Asp85 (Mg21z z zOd distances of 2.08 and 2.23 Å), and the
Od atoms of Asp212 (Mg21z z zOd distances of 2.23 and 2.36
Å); and at the vertex of the pyramid by two water molecules
(W1 and W2; Mg21z z zOw distances of 2.11 and 1.96 Å,
respectively). The mean interatomic distance between
Mg21 and O, obtained with ab initio structure optimization,

FIGURE 4 A model of the cation-binding site of bacteriorhodopsin. (A)
Ribbon representation of the BR helical segments, including all-trans
retinal, the Mg21 cation, and part of the side chains of D85 and D212.
Helix B was omitted for clarity. (B) Detailed view of the Mg21-binding
site, including two water molecules, W1 and W2. The atomic coordinates
were taken from the work of Henderson et al. (1990). Figure was created
using MOLSCRIPT (Kraulis, 1991).
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is in very good agreement with the experimental distance
between Mn21 and O, obtained with the EXAFS technique
(Sepulcre et al., 1996; 2.16 versus 2.17 Å; see Table 3). In
addition, the water molecule located in the upper vertex of
the pyramid is hydrogen bonded to the protonated Schiff
base nitrogen.

However, these results are not in good agreement with
some experimental determinations. In particular, mutation
of Asp85 to Asn decreases the affinity of BR for Ca21 by
about three times, whereas mutation of Asp212 to Asn de-
creases the affinity by 15 times (Zhang et al., 1993). This
suggests that the cation is more tightly bound to Asp212 than
to Asp85. The values ofEint obtained for the interaction
between Mg21 and both Asp residues, shown in Table 2, are
not in agreement with this rank order of affinities. Thus the
model structure depicted in Fig. 4B cannot explain the
different observed affinities of Asp85 and Asp212 for the
cation.

A possibility for decreasing the energy of interaction of
Mg21 with Asp85 is the introduction of a new water mole-
cule in thexy plane. The optimized geometry of the system
is shown in Fig. 5. The Mg21 cation has the Od atoms of
Asp212 (Mg21z z zOd distances of 2.24 and 2.09 Å), the Od1

atom of Asp85 (Mg21z z zOd1 distance of 2.18 Å), and the
oxygen atom of a water (W3) molecule (Mg21z z zOw dis-
tance of 2.02 Å), as equatorial ligands. The axis of the

pyramid is formed by the other two water molecules
(Mg21z z zOw distances of 2.20 and 1.99 Å). The average
interatomic distance between Mn21 and O is 2.12 Å (Table
3). In addition to the above interactions the system contains
hydrogen bonds between the Od2 atom of Asp85 and W2 and
W3 (see Fig. 5 and Table 3). It is quite evident from the
value ofDHf in Table 2 that the binding of Mg21 z 3H2O to
BR (Asp85 z Asp212 z Lys216 Schiff base) remains favorable
(260.8 kcal/mol). Furthermore, the different coordination
of Mg21 in this model relative to the previous one shown in
Fig. 4 B results in a predicted order of affinities between
Mg21 and Asp85 and Asp212, based on the energies of the
interaction (see Table 2), that qualitatively reproduces the
rank order of affinities found experimentally. It also agrees
with having a maximum of 3 C atoms in the second coor-
dination shell, as deduced from the EXAFS results (Sepul-
cre et al., 1996).

DISCUSSION

The obtained molecular model of the high-affinity cation-
binding site of BR suggests that the Mg21 cation can be
positioned between Asp85, Asp212, the protonated Schiff
base, and three water molecules. This model reproduces the
octahedral coordination shell determined in the magnetic

TABLE 2 Energy of interaction, energy of solvation, and enthalpy of formation of the complex between the cation and the
protein model

Cation Esolv Protein Eint DHf

(Mg21 z 2H2O) 2330.0 Asp85 z Asp212 z Lys216 2403.1 273.1
Mg21 Asp85 2367.5
Mg21 Asp212 2351.1
(Mg21 z 3H2O) 2292.1 Asp85 z Asp212 z Lys216 2351.9 260.8
Mg21 Asp85 2317.0
Mg21 Asp212 2362.6

Eint, Energy of interaction;Esolv, energy of solvation;DHf, enthalpy of formation. Values are in kcal/mol.

TABLE 3 Selected distances of the optimized molecular models consisting of (Mg21 z 2H2O) or (Mg21 z 3H2O) and the side
chains of Asp85, Asp212, and Lys216 of BR

Residue (atom)

Asp85 Asp212

W1
Ow

W2
Ow

W3
Ow Mean ExpOd1 Od2 Od1 Od2

(Mg21 z 2H2O) z z Asp85 z Asp212 z Lys216

Mg21 2.08 2.23 2.23 2.36 2.11 1.96 2.16
Lys216 (Nz) 2.88
Lys216 (Hz) 2.05

(Mg21 z 3H2O) z z Asp85 z Asp212 z Lys216

Mg21 2.18 2.24 2.09 2.20 1.99 2.02 2.12
Lys216 (Nz) 2.68
Lys216 (Hz) 1.79
W1 (Ow) 2.41
W1 (Hw) 1.60
Asp85 (Od2) 2.77 2.63

(Mn21) z z BR 2.17

Distances are in Å.
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susceptibility experiments, the distance between Mn21 and
O obtained with the EXAFS technique (Sepulcre et al.,
1996), and the rank order of affinities between the cation,
Asp85, and Asp212 determined by site-directed mutagenesis
(Zhang et al., 1993). In addition, difference infrared spec-
troscopy experiments (Fischer et al., 1994) have detected
the presence of a water molecule, located in the active site
of BR, which is structurally active during the BR6K primary
phototransition. The same authors postulated the possibility
that this structurally active water molecule was located
between Asp85 and the protonated Schiff base. The most
salient geometrical feature of the model proposed here (Fig.
5) is the presence of a water molecule (W1) hydrogen
bonded to both the Od1 atom of Asp85 and the Nz atom of
the Lys216 Schiff base, at distances of 2.41 and 2.68 Å,
respectively (see Table 3 andsolid linesin Fig. 5). The role
of this water molecule might be to act as a shuttle for the
Hz

1 between Nz (Lys216 Schiff base) and Od (Asp85) at the
level of the M412 intermediate. The protonation of Asp85

would obviously break its interaction with Mg21, increasing
the interaction Mg21z z zAsp212 and severely perturbing the
water structure, thus decreasing the interactions between
helices C and G. In this respect, our model agrees with the
movements of helix G in the M412 intermediate that have
been described by diffraction techniques (Subramaniam et
al., 1993; Kamikubo et al., 1996).

The recent 2.5-Å x-ray structure of BR (Pebay-Peyroula
et al., 1997) has identified eight water molecules in the
proton pathway. However, none of these molecules were
within hydrogen-bonding distance of Asp85. Notably, their
experimentally determined distance of 4.1 Å between the Od

atom of Asp85 and the Nz atom of the Lys216 Schiff base is
in very good agreement with the value of 4.24 Å obtained in
the present molecular model. On the other hand, the high-
resolution electron diffraction BR structure of Kimura et al.
(1997) gives further support for the ionized state of both
Asp85 and Asp212. This raises the question of how the retinal

Schiff base remains protonated within the membrane in the
presence of these two negatively charged residues. The
location of a cation in the neighboring Schiff base can give
some clue to this issue. Thus the positioning of Mg21 in the
retinal pocket neutralizes these two negative charges, favor-
ing the protonated state of the retinal Schiff base. In the
M412 intermediate, the resulting isomerization of the retinal
to 13-cis and the accompanying conformational changes
might decrease the interaction between Mg21 and Asp85,
facilitating its protonation from the Schiff base.

One of the interesting aspects of the current BR models is
the location and orientation of the Arg82 side chain.
Whereas the structural studies place the side chain of Arg82

at a distance from Asp85 or Asp212 where it is unable to
form ionic interactions (Henderson et al., 1990; Grigorieff
et al., 1996; Pebay-Peyroula et al., 1997; Kimura et al.,
1997), other studies place Arg82 close to Asp85 (Logunov et
al., 1995; Scharnagl et al., 1995). In the absence of a cation,
this last prediction is likely, because there would be a clear
tendency to neutralize the two negative charges of the
aspartic side chains. We have explored the possibility that
Asp85 could achieve interaction with both the Mg21 cation
and the polar headgroup of Arg82 through the Od atoms. The
optimization of this system produced a situation in which
the side chain of Arg82 was pointing toward the opposite
direction of the retinal pocket and thus was far from the
carboxylic headgroups of the Asp residues (results not
shown). We can conclude, from this simulation, that Arg82

cannot form part of the retinal-binding pocket if the divalent
cation is bound to the side chains of Asp85 and Asp212.

A model similar to that of Fig. 5 has been proposed by
Birge and co-workers, on the basis of two-photon and
microwave spectroscopies (Stuart et al., 1995; Birge et al.,
1996). Whereas the two models share an analogous dispo-
sition of side chains around the cation, we feel that our
model conforms more closely to the requirements of our
calculations plus mutagenic and EXAFS results. For exam-
ple, the Ca21 is directly ligated only to Asp85 in figures 1a
and 8a of Birge et al. (1996) and indirectly through water
molecules to Asp212, a situation that will not conform to the
reported affinities for these two carboxylic residues. Fur-
thermore, in this case the energy of interaction will probably
not be sufficient to surpass the energy of solvation of the
Ca21 cation.

Recently Roselli et al. (1996) studied the binding of Yb31

in both bacterioopsin and regenerated BR. They found an
identical binding site for bacterioopsin and BR, involving
phospholipid headgroups, and carboxylic and tyrosine side
chains. Thus this site must lie at or near the surface, a
location clearly different from the site postulated in the
present work. This difference in location may be due to the
higher binding affinity of lanthanides for the PO2

2 head-
groups, as compared to Ca21 or Mg21 (Roselli et al., 1996).

Fu et al. (1997) have recently suggested that the retinal
pocket cannot contain the color-controlling cation binding
site. This conclusion was based on the induction of the
blue-to-purple transition by large sized cations (also docu-

FIGURE 5 Optimized geometry of the cation-binding site of bacterio-
rhodopsin. The Mg21 cation has the Od atoms of Asp212, the Od1 atom of
Asp85, and the oxygen atom of a water molecule (not labeled, located
behind the Mg21 cation) as equatorial ligands. The axis of the pyramid is
formed by the other two water molecules (W1 and W2).
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mented in Tan et al., 1996), which can only occupy a
surface location. However, taking into account the sug-
gested existence of several proton channels through which
Asp85 can be protonated (Friedman et al., 1997), it is likely
that cation binding can affect the state of protonation of
Asp85 (and thus the purple-to-blue transition) in different
ways: 1) by binding in the neighboring Schiff base; 2) by
influencing the proton channels’ conductivity through
changes in protein conformation or through changes in the
pKa of key side chains; 3) by changing the proton concen-
tration at the entrance of the channel or even at the mem-
brane surface. The fact that it is possible to obtain the purple
form of the deionized membrane by increasing the pH (pKa

of ;5.4; Duñach et al., 1988a) gives support to the latter
effect.

This work was supported in part by DGICYT grants to LP (PB95-0624)
and EP (PB95-0609), a DGR grant to EP (1995SGR00481), and a Fun-
dacióLa MaratóTV3 grant to LP (14/97). Computations were performed
at the Centre de Computacio´ i Comunicacions de Catalunya.
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