

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1429-1432

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Design and Synthesis of S-(-)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-*a*]pyrazine (CSP-2503) Using Computational Simulation. A 5-HT_{1A} Receptor Agonist

María L. López-Rodríguez,^{a,*} M^a José Morcillo,^b Esther Fernández,^a Bellinda Benhamú,^a Ignacio Tejada,^a David Ayala,^a Alma Viso,^a Mireia Olivella,^c Leonardo Pardo,^c Mercedes Delgado,^d Jorge Manzanares^d and José A. Fuentes^d

^aDepartamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain ^bSección de Química, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, E-28040 Madrid, Spain ^cUnitat Bioestadística, Institut de Neurociències, Universitat Autònoma, E-08913 Cerdanyola del Vallès, Barcelona, Spain ^dUnidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, E-28040 Madrid, Spain

Received 12 November 2002; revised 20 January 2003; accepted 10 February 2003

Abstract—Based on a computational model for 5-HT_{1A}R-ligand interaction and QSAR studies, we have designed and synthesized a new series of arylpiperazines 2–8 which exhibit high 5-HT_{1A}R affinity and selectivity over α_1 -adrenergic receptors. Among them, compound CSP-2503 (4) has been pharmacologically characterized as a 5-HT_{1A}R agonist at somatodendritic and postsynaptic sites, endowed with anxiolytic properties.

© 2003 Elsevier Science Ltd. All rights reserved.

Introduction

The identification of multiple serotonin (5-HT) receptor subtypes in recent years has been accompanied by a parallel explosion in the development of drugs that alter 5-HT neurotransmission.^{1,2} Specially, the 5-HT_{1A} receptor (5-HT_{1A}R) is a major target for neurobiological research and drug development, due to its implication in many (patho)physiological processes.^{3–5} Agonists and partial agonists have been proven to be effective in anxiety and depression.^{6–9} In addition to therapeutic applications in the field of psychiatry, more recent preclinical studies have suggested that 5-HT_{1A}R agonists have also pronounced neuroprotective properties.^{10–12}

In the course of a program aimed at the discovery of new 5-HT_{1A}R agents, we have synthesized a series of arylpiperazines of general structure I (n=3, 4),^{13–19} which showed affinity for both 5-HT_{1A} and α_1 -adrenergic receptors due to the high degree of homology in both their transmembrane amino acid sequence and structure. It is widely accepted that the rhodopsin family of G protein-coupled receptors (GPCRs), including receptors for

biogenic amines, share a comparable transmembrane structure formed by a highly organized heptahelical transmembrane bundle.²⁰ In the present work, we have used a computational model between the 5-HT_{1A}R and arylpiperazines of formula I (X = -(CH₂)₃-, m = 0, n = 4, Ar = m-(ethylsulfonamido)phenyl;²¹ X = -(CH₂)₃-, m = 0, n=4, Ar = m-(acetylamino)phenyl)²² and previous 3-D-QSAR studies²³ for the synthesis of a new series of arylpiperazines I (n=1) which exhibit high 5-HT_{1A}R affinity and selectivity over α_1 -adrenoceptors. Among them, compound CSP-2503 (4) has been pharmacologically characterized as a 5-HT_{1A}R agonist endowed with anxiolytic properties.

Computational simulation

Figure 1a shows compound 1 (X = $-(CH_2)_3$ -, m = 0, n=4, Ar = naphth-1-yl) in the binding pocket of the 5-HT_{1A}R. This type of arylpiperazine, with a chain length of n=4 connecting both rings, was predicted^{21,22}

0960-894X/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00160-4

^{*}Corresponding author. Tel.:+34-91-3944239; fax:+34-91-3944103; e-mail: mluzir@quim.ucm.es

Figure 1. Interactions of compounds 1 and 2 with a model of the 5-HT_{1A}R. Hypothesis for 5-HT_{1A}/ α_1 selectivity.

to interact with Asp^{3.32} throughout the protonated NH group of the piperazine ring, and with Thr^{3.37}, Ser^{5.42}, and Thr^{5.43} throughout the hydantoin moiety. This model reproduces the suggested interaction of Ser/Thr at positions 5.42 and 5.43 with the hydroxyl/carbonyl moiety of the ligand.²⁴ The presence of Asp^{3.32}, Thr^{3.37}, Ser^{5.42}, and Thr/Ser^{5.43} in both 5-HT_{1A} and α_1 -adrenergic receptors (Fig. 1) explains the lack of selectivity of arylpiperazine derivatives with n=4. Notably, Thr^{5.39}, located in helix 5, is pointing inside the bundle and is present only in the 5-HT_{1A}R (Fig. 1). Thus, the interaction of the ligand with the side chain of Thr^{5.39} would provide the desired selectivity. This interaction is achieved by shortening the chain length to n=1 and avoiding the ligand to expand deep in the bundle as compound 1. Figure 1b shows compound 2 ($X = -(CH_2)_{3-}$, m = 0, n = 1, Ar = naphth-1-yl) interacting with Asp^{3.32} throughout the protonated NH group of the piperazine ring, and with Thr^{5.39}, Ser^{5.42}, and Thr^{5.43} throughout the hydantoin moiety. Table 1 shows the binding affinity of these compounds. Clearly, compound 2 is selective versus the α_1 -adrenoceptor while 1 binds both receptors, as predicted by the computer models.

Chemistry

Based on the proposed hypothesis for $5\text{-HT}_{1A}/\alpha_1$ selectivity, we have synthesized a new series of arylpiperazines I (*n*=1), in which the volume of the pharmacophore is increased in positions *ortho* and *meta* of the aromatic ring. Previous QSAR studies²³ showed that this is an additional structural feature that accounts for $5\text{-HT}_{1A}/\alpha_1$ selectivity. Compounds 2–8 were obtained by Mannich reaction of bicyclohydantoins 9,10^{25,26} or diketopiperazines 11,12^{27,28} with the appropriate bicycloarylpiperazines 13–16^{29–31} in the presence of formaldehyde (Scheme 1).

Table 1. Binding data of compounds I^a

Compd	Х	т	n	Ar	$K_i \pm SEM$ (5-HT _{1A})	$K_i \pm SEM (\alpha_1)$
1	(CH ₂) ₃	0	4	Naphth-1-yl	$\begin{array}{c} 2.4 \!\pm\! 0.1 \\ 10.4 \!\pm\! 0.8 \end{array}$	64.9±1.5
2	(CH ₂) ₃	0	1	Naphth-1-yl		>1000

^aValues are means of 2-4 experiments performed in triplicate.

Reagents and conditions: (a) EtOH, Δ .

Scheme 1. (a) See Tables 1 and 2 for chemical structures of compounds 2–8.

Pharmacology

Affinity data

Target compounds were assessed for in vitro binding affinity at serotoninergic 5-HT_{1A} and α_1 -adrenergic receptors by radioligand binding assays, using [3H]-8-OH-DPAT³² and [³H]prazosin,³³ respectively, in rat cerebral cortex membranes. All the synthesized compounds 2-8 exhibited high 5-HT_{1A}R affinity and selectivity over α_1 -adrenergic receptors (Table 2), confirming our hypotheses for 5-HT_{1A}/ α_1 selectivity in this class of arylpiperazine ligands. Compound 4 (CSP-2503) was also evaluated for affinity at serotonin 5-HT_{2A} $(K_i = 13.5 \pm 2.5 \text{ nM}), 5\text{-HT}_3 (K_i = 8.9 \pm 1.4 \text{ nM}), 5\text{-HT}_4 (K_i > 10,000 \text{ nM}) \text{ and } 5\text{-HT}_7 (K_i = 100.9 \pm 1.4 \text{ nM})$ receptors, serotonin transporter ($K_i = 976.3 \pm 42.8$ nM), dopamine D₂ receptors ($K_i = 192.1 \pm 20.1$ nM), and benzodiazepine receptors ($K_i > 10,000$ nM). The following specific ligands and tissue sources were used: 5-HT_{2A}, [³H]ketanserin, rat cerebral frontal cortex membranes;³⁴ 5-HT₃, [³H]LY278584, rat cerebral cortex membranes;³⁵ 5-HT₄, [³H]GR113808, rat striatum membranes;³⁶ 5-HT₇, [³H]-5-CT, rat hypothalamus

Table 2. Binding data of compounds I^a

Compd	Х	т	Ar	$K_i \pm \text{SEM}$ (5-HT _{1A})	$K_i \pm SEM (\alpha_1)$
3	(CH ₂) ₄	0	Naphth-1-yl	5.6 ± 0.3	>1000
4	$(CH_2)_3$	1	Naphth-1-yl	4.1 ± 1.2	>1000
(CSP-2503)					
5	$(CH_{2})_{4}$	0	Benzodioxan-5-yl	9.3 ± 0.4	> 1000
6	$(CH_{2})_{4}$	0	Benzodioxepin-6-yl	6.1 ± 0.4	> 1000
7	$(CH_{2})_{3}$	1	Benzodioxepin-6-yl	12.3 ± 2.1	> 1000
8	$(CH_2)_3$	0	Benzimidazol-4-yl	$4.1\!\pm\!0.2$	>10,000

^aValues are means of 2-4 experiments performed in triplicate.

membranes;³⁷ 5-HT transporter, [³H]paroxetine, rat cerebral cortex membranes;³⁸ D₂, [³H]raclopride, rat striatum membranes;³⁹ benzodiazepine, [³H]flunitrazepam, rat cerebral cortex membranes.⁴⁰

Pharmacological characterization of CSP-2503 (4)

Presynaptic 5-HT_{1A}R activity was assessed by measuring mouse rectal temperature.⁴¹ The administration of CSP-2503 provoked a dose related decrease in mice rectal temperature (Fig. 2). This induced hypothermia suggests that CSP-2503 acts on 5-HT_{1A} somatodendritic autoreceptors.

The transduction mechanism of CSP-2503 was determined by using HeLa cells expressing human 5-HT_{1A}Rs.⁴² CSP-2503 inhibited in a dose dependent manner the cAMP increase induced by forskolin. The half maximal effect (EC₅₀) observed was 0.15 μ M and the maximal inhibitory effect was 90.3 \pm 1.3%. This negative control of CSP-2503 on adenylate cyclase activity indicates a transduction system coupled to 5-HT_{1A}R stimulation.

Functional activity of CSP-2503 on 5-HT_{1A}Rs was further assessed by evaluating its ability to decrease 5-HT neuronal activity.⁴³ The administration of CSP-2503 induced a decrease in 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in whole hypothalamus of mice (Fig. 3). These results further indicate that CSP-2503 behaves as a 5-HT_{1A}R agonist acting at the somato-dendritic site.

Furthermore, we have evaluated the potential anxiolytic activity of CSP-2503 by using the light/dark box test.⁴⁴ Indeed, the administration of CSP-2503 (10 mg/kg) caused an increase in the time that mice spent in the lit area (155.4 ± 9.3 vs 83 ± 13 s, P<0.05). The 5-HT_{1A}R

Figure 2. Dose-response effect of CSP-2503 on rectal temperature. *Values of CSP-2503 that decrease more than $1.1 \,^{\circ}$ C and are significantly different (P < 0.05) from their respective basal rectal temperature before *sc* drug administration.

Figure 3. Dose–response effect of CSP-2503 on hypothalamic 5-HT activity. *Values of CSP-2503 treated mice that are significantly different (P < 0.05) from vehicle group.

agonist 8-OH-DPAT was tested in the same test as reference compound, at a dose of 2.5 mg/kg (time spent in the lit area: 188.8 ± 26 vs 105 ± 14.7 s). These measurements were performed thirty min after the *sc* administration of the drug or vehicle and for the period of 5 min.

These results indicate that CSP-2503 is an agonist of the 5- $HT_{1A}R$ at the somatodendritic and postsynaptic sites, with anxiolytic potential. In order to complete its pharmacological profile, further behavioural and neuro-chemical evaluation are currently in progress, though the present data suggest that CSP-2503 may be therapeutically useful in the treatment of anxiety-related disorders.

Conclusions

Based on our recently proposed computational model for 5-HT_{1A}R-ligand interaction, we have synthesized a new series of arylpiperazines I (n = 1) which exhibit high 5-HT_{1A}R affinity and selectivity over α_1 -adrenergic receptors. Among them, compound CSP-2503 (4) has been pharmacologically characterized as a 5-HT_{1A}R agonist at somatodendritic and postsynaptic sites, endowed with anxiolytic properties.

Acknowledgements

This work was supported by Ministerio de Ciencia y Tecnología (BQU2001-1459), Comunidad Autónoma de Madrid (08.5/0079/2000), and CEPA-SCHWARZ-PHARMA. E. Fernández and I. Tejada are also grateful to U.N.E.D. for a predoctoral grant. Computer facilities were provided by the Centre de Computació i Comunicacions de Catalunya.

References and Notes

- 1. Baumgarten, H. G.; Göthert, M. Serotoninergic Neurons and 5-HT Receptors in the CNS; Handb. Exp. Pharm. Vol. 129; Springer Verlag: Berlin, 1997.
- 2. Advances in Serotonin Receptor Research: Molecular Biology, Signal Transmission, and Therapeutics; Martin, G. R., Eglen, R. M., Hoyer, D., Hamblin, M. W., Yocca, F., Eds.
- Ann. N.Y. Acad. Sci.: New York, 1998.Olivier, B.; van Wijngaarden, I.; Soudjin, W. Serotonin
- Receptors and their Ligands; Elsevier: The Nederlands, 1997.
- 4. Olivier, B.; Soudjin, W.; van Wijngaarden, I. Prog. Drug Res. 1999, 52, 103.
- 5. López-Rodríguez, M. L.; Ayala, D.; Benhamú, B.; Morcillo, M. J.; Viso, A. Curr. Med. Chem. 2002, 9, 443.
- 6. Rickels, K.; Derivan, A.; Kunz, N.; Pallay, A.; Schweizer, E. J. Clin. Psychopharmacol. **1996**, *16*, 212.
- 7. Lee, C. H.; Oh, J. I.; Park, H. D.; Kim, H. J.; Park, T. K.; Kim, J. S.; Hong, C. Y.; Lee, S. J.; Ahn, K. H.; Kim, Y. Z. *Arch. Pharm. Res.* **1999**, *22*, 157.
- 8. Schwartz, P. J.; Turner, E. H.; García-Borreguero, D.; Sedway, J.; Vetticad, R. G.; Wehr, T. A.; Murphy, D. L.;
- Rosenthal, N. E. *Psychiatry Res.* **1999**, *86*, 9. 9. Peglion, J. L.; Goument, B.; Despaux, N.; Charlot, V.; Giraud,
- H.; Nisole, C.; Newman-Tancredi, A.; Dekeyne, A.; Bertrand,
- M.; Genissel, P.; Millan, M. J. J. Med. Chem. 2002, 45, 165.
- 10. Alessandri, B.; Tsuchida, E.; Bullock, R. M. Brain Res. 1999, 845, 232.
- 11. Kamei, K.; Maeda, N.; Ogino, R.; Koyama, M.; Nakajima, M.; Tatsuoka, T.; Ohno, T.; Inoue, T. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 595.
- 12. Harkany, T.; Mulder, J.; Horvath, K. M.; Keijser, J.; van der Meeberg, E. K.; Nyakas, C.; Luiten, P. G. M. *Neuroscience* **2001**, *108*, 629.
- López-Rodríguez, M. L.; Rosado, M. L.; Benhamú, B.;
 Fernández, E.; Morcillo, M. J. Patent PCT/ES95/00094, 1995.
 López-Rodríguez, M. L.; Rosado, M. L.; Benhamú, B.;
 Morcillo, M. J.; Sanz, A. M.; Orensanz, L.; Beneitez, M. E.;
- Fuentes, J. A.; Manzanares, J. J. Med. Chem. 1996, 39, 4439.
- 15. López-Rodríguez, M. L.; Morcillo, M. J.; Fernández, E.; Porras, E.; Murcia, M.; Sanz, A. M.; Orensanz, L. J. Med. Chem. **1997**, 40, 2653.
- 16. López-Rodríguez, M. L.; Morcillo, M. J.; Fernández, E. Patent PCT/ES98/00250, 1998.
- 17. López-Rodríguez, M. L.; Morcillo, M. J.; Rovat, T. K.; Fernández, E.; Vicente, B.; Sanz, A. M.; Hernández, M.; Orensanz, L. J. Med. Chem. **1999**, 42, 36.
- 18. López-Rodríguez, M. L.; Viso, A.; Benhamú, B.; Rominguera, J. L.; Murcia, M. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2339.
- 19. López-Rodríguez, M. L.; Morcillo, M. J.; Fernández, E.; Porras, E.; Orensanz, L.; Beneytez, M. E.; Manzanares, J.; Fuentes, J. A. J. Med. Chem. **2001**, 44, 186.

- 20. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; LeTrong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E. *Science* **2000**, *289*, 739.
- 21. López-Rodríguez, M. L.; Morcillo, M. J.; Fernández, E.; Rosado, M. L.; Pardo, L.; Schaper, K.-J. *J. Med. Chem.* **2001**, *44*, 198.
- López-Rodríguez, M. L.; Vicente, B.; Deupi, X.; Barrondo, S.; Olivella, M.; Morcillo, M. J.; Benhamú, B.; Ballesteros, J. A.; Sallés, J.; Pardo, L. *Mol. Pharmacol.* 2002, *62*, 15.
 López-Rodríguez, M. L.; Rosado, M. L.; Benhamú, B.; Morcillo, M. J.; Fernández, E.; Schaper, K.-J. *J. Med. Chem.* 1997, *40*, 1648.
- 24. Liapakis, G.; Ballesteros, J. A.; Papachristou, S.; Chan, W. C.; Chen, X.; Javitch, J. A. J. Biol. Chem. 2000, 275, 37779.
- 25. Dakin, H. D. J. Biol. Chem. 1920, 44, 499.
- 26. Freed, M. E.; Day, A. R. J. Org. Chem. 1960, 25, 2108.
- 27. Vicar, J.; Smolíková, J.; Blahá, K. Collect. Czech. Chem. Commun. 1972, 37, 4060.
- Bláha, K.; Budesinský, M.; Fric, I.; Smolíková, J.; Vicar, J. *Tetrahedron Lett.* **1972**, *15*, 1437.
- 29. Glennon, R. A.; Slusher, R. M.; Lyon, R. A.; Titeler, M.; McKenney, J. D. J. Med. Chem. **1986**, 29, 2375.
- 30. van Wijngaarden, I.; Kruse, C. G.; van der Heyden, J. A. M.; Tulp, M. T. M. J. Med. Chem. **1988**, *31*, 1934.
- 31. López-Rodríguez, M. L.; Benhamú, B.; Ayala, D.; Rominguera, J. L.; Murcia, M.; Ramos, J. A.; Viso, A. *Tetrahedron* **2000**, *56*, 3245.
- 32. Clark, R. D.; Weinhardt, K. K.; Berger, J.; Fischer, L. E.; Brown, C. M.; MacKinnon, A. C.; Kilpatrick, A. T.; Spedding, M. J. Med. Chem. **1990**, *33*, 633.
- 33. Ambrosio, E.; Montero, M. T.; Fernández, I.; Azuara, M. C.; Orensanz, L. M. Neurosci. Lett. **1984**, 49, 193.
- 34. Titeler, M.; Lyon, R. A.; Davis, K. H.; Glennon, R. A. Biochem. Pharmacol. **1987**, *36*, 3265.
- 35. Wong, D. T.; Robertson, D. W.; Reid, L. R. Eur. J. Pharmacol. 1989, 166, 107.
- 36. Grossman, C. J.; Kilpatrick, G. J.; Bunce, K. T. Br. J. Pharmacol. 1993, 109, 618.
- 37. Aguirre, N.; Ballaz, S.; Lasheras, B.; del Río, J. Eur. J. Pharmacol. 1998, 346, 181.
- 38. Hadert, E.; Graham, D.; Tahraoui, L.; Claustre, Y.; Langer, S. Z. *Eur. J. Pharmacol.* **1985**, *118*, 107.
- 39. Hall, H.; Wedel, I.; Sällemark, M. Pharmacol. Toxicol. 1988, 63, 118.
- 40. Orensanz, L. M.; Córdoba, C.; Fernández, I. Neurosci. Lett. 1990, 111, 241.
- 41. Goodwin, G. M.; Green, A. R. Br. J. Pharmacol. 1985, 84, 743.
- 42. Boddeke, H. W.; Fargin, A.; Raymond, J. R.; Schoeffter, P.; Hoyer, D. Arch. Pharmacol. **1992**, *345*, 257.
- 43. Chapin, D. S.; Lookingland, K. J.; Moore, K. E. Currents
- Separations 1986, 7, 68.
- 44. Crawley, J. N. Neurosci. Biobehav. Rev. 1985, 9, 37.